A modified harmonic oscillator approximation scheme for th;e dielectric constants of AI,Ga, -Xes
نویسنده
چکیده
The dielectric functions of Al,Gai _ As have recently been measured for several Al mole fractions over the 1.5-6.0 eV wavelength range [D.E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, J. Appl. Phys. 60, 754 (1986)]. To make use of this data to perform optical modeling for spectroscopic ellipsometry analysis of AIXGal _ As-containing samples, and for other optical modeling purposes, a reasonable interpolation scheme is required to estimate the dielectric functions of-intermediate compounds. In this work, we will present a modified version of the harmonic oscillator approximation (HOA) of Erman et al. [M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, J. Appl. Phys. 56, 2664 (1984)] to model the experimental data and interpolate between the known compositions over the 1.5-5.0 eV range. Our model uses additional harmonic oscillators and allows each oscillator to have -an independent phase. These modifications significantly improve the accuracy of the approximation for photon energies at and below the fundamental band-gap energy. This allows much more accurate modeling of reflection problems for multilayer GaAs/AlGaAs structures. We will present test of this approach with simulations of spectroscopic ellipsometry data using known data, and with measured spectroscopic ellipsometer data on AIXGal -&-containing samples grown by molecular-beam epitaxy and organometallic chemical vapor deposition.
منابع مشابه
A QUARTIC POTENTIAL FOR THE NUCLEONIC QUARKS
We assume that each valence quark in a nucleon is in a phenomenological modified harmonic oscillator potential of the form: ( l+yo) (ar +br+cr +dr ), where a, b, c and d are constants and ? is one of the Dirac matrices. Then by making use of a suitable ansatz, the Dirac equation has a very simple solution which is exact. We then have calculated the static properties of the nucleon in the ...
متن کاملModified Physical Optics Approximation for RCS Calculation of Electrically Large Objects with Coated Dielectric
The Radar Cross Section of a target plays an important role in the detection of targets by radars. This paper presents a new method to predict the bistatic and monostatic RCS of coated electrically large objects. The bodies can be covered by lossy electric and/or magnetic Radar Absorbing Materials (RAMs). These materials can be approximated by the Fresnel reflection coefficients. The pro...
متن کاملSuper algebra and Harmonic Oscillator in Anti de Sitter space
The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...
متن کاملA Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with Cubic and Harmonic Restoring Force
This article analyzes a strongly nonlinear oscillator with cubic and harmonic restoring force and proposes an efficient analytical technique based on the modified energy balance method (MEBM). The proposed method incorporates higher-order approximations. After applying the proposed MEBM, a set of complicated higher-order nonlinear algebraic equations are obtained. Higher-order nonlinear algebra...
متن کاملNumerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method
The controlled harmonic oscillator with retarded damping, is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems. In this paper, to solve this problem, we presented an analytical method. This approach is based on the homotopy perturbation method. The solution procedure becomes easier, simpler and mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999